Permutation Groups, a Related Algebra and a Conjecture of Cameron

نویسنده

  • JULIAN D. GILBEY
چکیده

We consider the permutation group algebra defined by Cameron and show that if the permutation group has no finite orbits, then no homogeneous element of degree one is a zero-divisor of the algebra. We proceed to make a conjecture which would show that the algebra is an integral domain if, in addition, the group is oligomorphic. We go on to show that this conjecture is true in certain special cases, including those of the form H Wr S and H Wr A, and show that in the oligormorphic case, the algebras corresponding to these special groups are polynomial algebras. In the H Wr A case, the algebra is related to the shuffle algebra of free Lie algebra theory.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Permutation Group Algebras

We consider the permutation group algebra defined by Cameron and show that if the permutation group has no finite orbits, then no homogeneous element of degree one is a zero-divisor of the algebra. We proceed to make a conjecture which would show that the algebra is an integral domain if, in addition, the group is oligomorphic. We go on to show that this conjecture is true in certain special ca...

متن کامل

When the Orbit Algebra of Group Is an Integral Domain? Proof of a Conjecture of P.j. Cameron

P.J.Cameron introduced the orbit algebra of a permutation group and conjectured that this algebra is an integral domain if and only if the group has no finite orbit. We prove that this conjecture holds and in fact that the age algebra of a relational structure R is an integral domain if and only if R is age-inexhaustible. We deduce these results from a combinatorial lemma asserting that if a pr...

متن کامل

Transitive Permutation Groups without Semiregular Subgroups

A transitive finite permutation group is called elusive if it contains no nontrivial semiregular subgroup. The purpose of the paper is to collect known information about elusive groups. The main results are recursive constructions of elusive permutation groups, using various product operations and affine group constructions. A brief historical introduction and a survey of known elusive groups a...

متن کامل

$L^p$-Conjecture on Hypergroups

In this paper, we study $L^p$-conjecture on locally compact hypergroups and by some technical proofs we give some sufficient and necessary conditions  for a weighted Lebesgue space  $L^p(K,w)$ to be a convolution Banach algebra, where $1<p<infty$, $K$ is a locally compact hypergroup and $w$ is a weight function on $K$.  Among the other things, we also show that if $K$ is a locally compact hyper...

متن کامل

Base sizes for simple groups and a conjecture of Cameron

Let G be a permutation group on a finite set Ω. A base for G is a subset B ⊆ Ω with pointwise stabilizer in G that is trivial; we write b(G) for the smallest size of a base for G. In this paper we prove that b(G) ! 6 if G is an almost simple group of exceptional Lie type and Ω is a primitive faithful G-set. An important consequence of this result, when combined with other recent work, is that b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004